Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Front Oncol ; 14: 1309681, 2024.
Article in English | MEDLINE | ID: mdl-38746684

ABSTRACT

Objectives: In this study, we compared the dynamic changes in body composition during XELOX/SOX chemotherapy in patients with gastric cancer. Furthermore, we investigated the potential impact of these changes on the occurrence of toxic side effects. Methods: Patients with gastric cancer who received adjuvant or first-line XELOX/SOX chemotherapy between January 2020 and June 2023 were enrolled. The Brief Conghua Scale was used to assess energy intake, and nutritional management was carried out with reference to the Chinese Guidelines for Nutritional Therapy of Cancer 2020. The NRS 2002 Nutritional Risk Screening Scale, PG-SGA scale, bioelectrical impedance analysis, and dynamic changes in lumbar 3 vertebral skeletal muscle index were compared between baseline and post-chemotherapy in the study. The neutropenia was evaluated using the Common Terminology Criteria for Adverse Events V.5.0, developed by the National Institutes of Health. Results: Dynamic follow-up was completed in 39 cases, with a mean follow-up time of 117.62 ± 43.38 days. The incidence of sarcopenia increased significantly after chemotherapy, escalating from 46.2% to 51.3%. After chemotherapy, the mean L3SMI decreased from 36.00 cm2/m2 to 34.99 cm2/m2. Furthermore, when compared to pre-chemotherapy values, the body composition indexes body mass index (BMI), SL3, fat mass free index (FFMI), lean body mass (LBM), and body surface area (BSA) were significantly reduced after chemotherapy. Regardless of baseline or post-chemotherapy status, the incidence of grade ≥ 3 neutropenia was significantly higher in the sarcopenia group than in the non-sarcopenia group. Furthermore, when the skeletal muscle index decreased during chemotherapy, the incidence of grade ≥ 3 neutropenia was significantly higher in both the sarcopenia and non-sarcopenia groups compared to baseline. When the incidence of grade ≥ 3 neutropenia in the post-chemotherapy sarcopenia group was compared to baseline status, the increase was significantly higher in the sarcopenia group than in the maintenance/increase group. Conclusions: Skeletal muscle mass decreased progressively during XELOX/SOX chemotherapy in gastric cancer patients, followed by a higher incidence of grade ≥ 3 neutropenia.

2.
Front Pharmacol ; 15: 1390294, 2024.
Article in English | MEDLINE | ID: mdl-38720773

ABSTRACT

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

3.
Front Pharmacol ; 15: 1406127, 2024.
Article in English | MEDLINE | ID: mdl-38720779

ABSTRACT

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

4.
Small ; : e2400361, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708879

ABSTRACT

Photothermal therapy has emerged as a promising approach for cancer treatment, which can cause ferroptosis to enhance immunotherapeutic efficacy. However, excessively generated immunogenicity will induce serious inflammatory response syndrome, resulting in a discounted therapeutic effect. Herein, a kind of NIR absorption small organic chromophore nanoparticles (TTHM NPs) with high photothermal conversion efficiency (68.33%) is developed, which can induce mitochondria dysfunction, generate mitochondrial superoxide, and following ferroptosis. TTHM NPs-based photothermal therapy is combined with Sulfasalazine (SUZ), a kind of nonsteroidal anti-inflammatory drugs, to weaken inflammation and promote ferroptosis through suppressing glutamate/cystine (Glu/Cys) antiporter system Xc- (xCT). Additionally, the combination of SUZ with PTT can induce immunogenic cell death (ICD), followed by promoting the maturation of DCs and the attraction of CD8+ T cell, which will secrete IFN-γ and trigger self-amplified ferroptosis via inhibiting xCT and simulating Acyl-CoA synthetase long-chain family member 4 (ACSL4). Moreover, the in vivo results demonstrate that this combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation, facilitate T-cell infiltration, and realize effective thermal elimination of primary tumors and distant tumors. In general, this work provides an excellent example of combined medication and stimulates new thinking about onco-therapy and inflammatory response.

5.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664790

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Single-Cell Analysis , Transcriptome , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Animals , Gene Expression Profiling , Chromatin/metabolism , Chromatin/genetics , Mice, Inbred C57BL , Gene Regulatory Networks , Chromatin Assembly and Disassembly , Disease Models, Animal , Male , RNA-Seq , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology
6.
Food Funct ; 15(8): 4079-4094, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563230

ABSTRACT

Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a ß-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its ß-glucan structure and functions in gut microbiota.


Subject(s)
Dendrobium , Ethanol , Gastritis , NF-kappa B , Polysaccharides , Dendrobium/chemistry , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastritis/chemically induced , Gastritis/drug therapy , Male , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Plant Extracts/pharmacology , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Protective Agents/pharmacology
7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 493-497, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632072

ABSTRACT

Objective: To summarize the surgical treatment methods for avascular necrosis of the talus. Methods: The recent domestic and international literature related to avascular necrosis of the talus was extensively conducted. The pathogenesis, surgical treatment methods, and prognosis were summarized. Results: The clinical symptoms of avascular necrosis of the talus at early stage are not obvious, and most patients have progressed to Ficat-Arlet stages Ⅲ-Ⅳ and require surgical treatment. Currently, surgical treatments for this disease include core decompression, vascularized bone flap transplantation, arthroplasty, and arthrodesis, etc. Early avascular necrosis of the talus can be treated conservatively, and if treatment fails, core decompression can be considered. Arthrodesis is a remedial surgery for patients with end-stage arthritis and collapse, and in cases of severe bone loss, tibiotalocalcaneal arthrodesis and bone grafting are required. Vascularized bone flap transplantation is effective and plays a role in all stages of avascular necrosis of the talus, but the appropriate donor area for the flap still needs further to be studied. Conclusion: The surgical treatment and the system of treatment for different stages of avascular necrosis of the talus still need to be refined.


Subject(s)
Osteonecrosis , Talus , Humans , Talus/surgery , Surgical Flaps/blood supply , Bone Transplantation/methods , Arthrodesis/methods , Osteonecrosis/therapy
8.
Chin Med ; 19(1): 51, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519991

ABSTRACT

Ganoderma lucidum is a precious fungus, particularly valued for its dual use as both medicine and food. Ganoderic acids (GAs), the distinctive triterpenoids found in the Ganoderma genus, exhibit a wide range of pharmacological activities. However, the limited resources of GAs restrict their clinic usage and drug discovery. In this review, we presented a comprehensive summary focusing on the diverse structures and pharmacological activity of GAs in G. lucidum. Additionally, we discussed the latest advancements in the elucidation of GA biosynthesis, as well as the progress in heterosynthesis and liquid fermentation methods aimed at further increasing GA production. Furthermore, we summarized the omics data, genetic transformation system, and cultivation techniques of G. lucidum, described as medicinal model fungi. The understanding of Ganoderic acids chemodiversity and biosynthesis in medicinal model fungi Ganoderma lucidum will provide important insights into the exploration and utilization of natural products in medicinal fungi.

9.
World J Stem Cells ; 16(2): 191-206, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38455098

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM: To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS: Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS: General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION: Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.

10.
Bioact Mater ; 35: 17-30, 2024 May.
Article in English | MEDLINE | ID: mdl-38304915

ABSTRACT

Diabetic wounds has a gradually increasing incidence and morbidity. Excessive inflammation due to immune imbalance leads to delayed wound healing. Here, we reveal the interconnection between activation of the NLRP3 inflammatory pathway in endotheliocyte and polarization of macrophages via the cGAS-STING pathway in the oxidative microenvironment. To enhance the immune-regulation based on repairing mitochondrial oxidative damage, a zeolitic imidazolate framework-8 coated with cerium dioxide that carries Rhoassociated protein kinase inhibition Y-27632 (CeO2-Y@ZIF-8) is developed. It is encapsulated in a photocross-linkable hydrogel (GelMA) with cationic quaternary ammonium salt groups modified to endow the antibacterial properties (CeO2-Y@ZIF-8@Gel). CeO2 with superoxide dismutase and catalase activities can remove excess reactive oxygen species to limit mitochondrial damage and Y-27632 can repair damaged mitochondrial DNA, thus improving the proliferation of endotheliocyte. After endotheliocyte uptakes CeO2-Y@ZIF-8 NPs to degrade peroxides into water and oxygen in cells and mitochondria, NLRP3 inflammatory pathway is inhibited and the leakage of oxidatively damaged mitochondrial DNA (Ox-mtDNA, a damage-associated molecular pattern) through mPTP decreases. Futhermore, as the cGAS-STING pathway activated by Ox-mtDNA down-regulated, the M2 phenotype polarization and anti-inflammatory factors increase. Collectively, CeO2-Y@ZIF-8@Gel, through remodulating the crosstalk between macrophage reprogramming and angiogenesis to alleviate inflammation in the microenvironment and accelerates wound healing.

11.
Biomed Chromatogr ; 38(2): e5787, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38038157

ABSTRACT

Previous studies have found that removing the sporoderm significantly enhanced antitumor and immunoregulatory activities of Ganoderma lucidum spore (GLS) compared with breaking the sporoderm. However, the pharmacokinetics of sporoderm-removed GLS (RGLS) and sporoderm-broken GLS (BGLS) remain elusive. To compare the pharmacokinetic differences between the two products, we developed a UPLC-QqQ MS method for determining nine representative triterpenoid concentrations. Chloramphenicol was used as an internal standard. The samples were separated on a reversed-phase column using acetonitrile-0.1% formic acid and water-0.1% formic acid as mobile phases. Nine triterpenoids were analyzed using multiple reaction monitoring mode. The results showed that the area under the concentration-time curve from dosing to time t of all nine components was increased in RGLS compared with BGLS. And the time to the maximum concentration in BGLS was delayed compared with that of RGLS. These indicated that the absorption of RGLS was better than that of BGLS, and the sporoderm might hinder the absorption of the active components. These results increase our understanding of the bioavailability of BGLS and RGLS and indicate that increased bioavailability is one of the main reasons for the enhanced efficacy of RGLS.


Subject(s)
Reishi , Triterpenes , Rats , Animals , Chromatography, High Pressure Liquid , Spores, Fungal/chemistry , Formates , Triterpenes/analysis
12.
Facial Plast Surg Aesthet Med ; 26(2): 185-189, 2024.
Article in English | MEDLINE | ID: mdl-37751173

ABSTRACT

Background: A more refined and clinically related facial expression analysis is required for patients who wish to be perceived more emotionally positive. Objective: To measure the change in skin vector and volume in facial subunits when expressing positive expression (happiness) compared with negative expressions (sadness, fear, disgust, and anger), using three-dimensional (3D) stereophotogrammetry analysis. Methods: This study took 3D photographs of 20 volunteers' face at rest and during positive and negative expression. The directions of skin vector and volume changes in each facial subregion were recorded and calculated. Results: In the positive expression, 78.3% (95% confidence interval [CI] 66.8-89.9) of the medial midfacial subregions presented superolateral vector and volume increase, whereas volume decrease in 82.5% (95% CI 78.5-86.5) of the lip subregions could be observed. In the negative expression, the vector changes were predominantly inferomedial in 26.0% (95% CI 15.4-36.5) of the forehead and 36.8% (95% CI 33.2-40.3) of the upper eyelid subregions, whereas volume increases in 34.0% (95% CI 30.4-37.7) of the upper eyelid subregions were observed. Conclusions: This 3D stereophotogrammetry analysis presents the morphological difference between the positive and negative expression.


Subject(s)
Facial Expression , Forehead , Humans , Photogrammetry , Skin
14.
Orthop Surg ; 15(12): 3046-3054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37963829

ABSTRACT

Bone nonunion and bone defects frequently occur following high-energy open injuries or debridement surgeries, presenting complex challenges to treatment and significantly affecting patients' quality of life. At present, there are three primary treatment options available for addressing bone nonunion and bone defects: vascularized bone grafts, the Masquelet technique, and the Ilizarov technique. The Ilizarov technique, also known as distraction osteogenesis, is widely favored by orthopedic surgeons because of several advantages, including minimal soft tissue requirements, low infection risk, and short consolidation time. However, in recent years, the application of the Masquelet technique has resulted in novel treatment methods for managing post-traumatic bone infections when bone defects are present. Although these new techniques do not constitute a panacea, they continue to be the most commonly employed options for treating complex large bone nonunion and bone defects. This review evaluates the currently available research on the Ilizarov and Masquelet bone transport techniques applied at various anatomical sites. Additionally, it explores treatment durations and associated complications to establish a theoretical foundation that can guide clinical treatment decisions and surgical procedures for the management of bone nonunion and bone defects.


Subject(s)
Ilizarov Technique , Osteogenesis, Distraction , Tibial Fractures , Humans , Quality of Life , Retrospective Studies , Treatment Outcome , Tibial Fractures/surgery
15.
Food Chem Toxicol ; 182: 114175, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944784

ABSTRACT

Ganoderma lucidum spore powder is a traditional Chinese medicine with a variety of health benefits. Sporoderm-removed Ganoderma lucidum spores (RGLS) can be more effectively absorbed and utilized by the body. Due to the extensive clinical application and lack of long-term (>30 days) safety evaluation of RGLS, it is necessary to evaluate its repeated dose toxicity during a longer administration period. Here, we conducted a 26-week repeated dose toxicity test of RGLS in Sprague‒Dawley (SD) rats. The male and female rats were orally administered RGLS at doses of 0, 0.4, 1.2, and 4.0 g/kg once daily for a period of 26 weeks. The safety profile of RGLS was assessed through in vivo observations of survival, body weight, and food consumption; hematological, biochemical, and urine analyses; immunotoxicity assays; and histopathological examinations. The results showed that no significant systemic toxicity was observed following 26 weeks of repeated RGLS administration. Our data showed a no-observed adverse effect level (NOAEL) of 4.0 g/kg, which is approximately 20 times higher than the human equivalent dose. Our results support that RGLS can be considered a safe medicinal or food product that can be added to a healthy diet.


Subject(s)
Ganoderma , Reishi , Humans , Rats , Male , Female , Animals , Spores, Fungal , Rats, Sprague-Dawley , Medicine, Chinese Traditional , No-Observed-Adverse-Effect Level
16.
J Agric Food Chem ; 71(44): 16630-16646, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37883687

ABSTRACT

The increasing incidence of colitis and the side effects of its therapeutic drugs have led to the search for compounds of natural origin, including phenolics, as new treatments for colitis. In this study, the potential mechanism of Dendrobium officinale leaf phenolics (DOP) on the relief of dextran sulfate sodium (DSS)-induced colitis was explored. The results showed that DOP treatment for 36 days reduced the symptoms of colitis caused by DSS, including reduction of the disease activity index and alleviation of colonic tissue damage. In addition, DOP downregulated the expression of key proteins of the TLR4/NF-κB signaling pathway and reduced the production of inflammatory cytokines. Furthermore, DOP could enhance the expression of tight junction proteins including ZO-1, Occludin, and Claudin-1 to restore intestinal mucosal barrier function. DOP also effectively regulates disordered intestinal flora and enhances the production of short-chain fatty acids, which is also beneficial in modulating gut internal environmental homeostasis, inhibiting inflammation, and restoring the intestinal barrier. These findings indicated that DOP can ameliorate DSS-induced chronic colitis by regulating gut microbiota, intestinal barrier, and inflammation, and it is a promising ingredient from D. officinale.


Subject(s)
Colitis, Ulcerative , Colitis , Dendrobium , Gastrointestinal Microbiome , Animals , Mice , Dextran Sulfate/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Inflammation , Colon , Chronic Disease , Disease Models, Animal , Mice, Inbred C57BL
17.
Sensors (Basel) ; 23(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687954

ABSTRACT

This paper presents an innovative approach for predicting timing errors tailored to near-/sub-threshold operations, addressing the energy-efficient requirements of digital circuits in applications, such as IoT devices and wearables. The method involves assessing deep path activity within an adjustable window prior to the root clock's rising edge. By dynamically adapting the prediction window and supply voltage based on error detection outcomes, the approach effectively mitigates false predictions-an essential concern in low-voltage prediction techniques. The efficacy of this strategy is demonstrated through its implementation in a near-/sub-threshold 32-bit microprocessor system. The approach incurs only a modest 6.84% area overhead attributed to well-engineered lightweight design methodologies. Furthermore, with the integration of clock gating, the system functions seamlessly across a voltage range of 0.4 V-1.2 V (5-100 MHz), effectively catering to adaptive energy efficiency. Empirical results highlight the potential of the proposed strategy, achieving a significant 46.95% energy reduction at the Minimum Energy Point (MEP, 15 MHz) compared to signoff margins. Additionally, a 19.75% energy decrease is observed compared to the zero-margin operation, demonstrating successful realization of negative margins.

18.
Hortic Res ; 10(7): uhad109, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577405

ABSTRACT

Salvia miltiorrhiza and S. grandifolia are rich in diterpenoids and have therapeutic effects on cardiovascular diseases. In this study, the spatial distribution of diterpenoids in both species was analyzed by a combination of metabolomics and mass spectrometry imaging techniques. The results indicated that diterpenoids in S. miltiorrhiza were mainly abietane-type norditerpenoid quinones with a furan or dihydrofuran D-ring and were mainly distributed in the periderm of the roots, e.g. cryptotanshinone and tanshinone IIA. The compounds in S. grandifolia were mainly phenolic abietane-type tricyclic diterpenoids with six- or seven-membered C-rings, and were widely distributed in the periderm, phloem, and xylem of the roots, e.g. 11-hydroxy-sugiol, 11,20-dihydroxy-sugiol, and 11,20-dihydroxy-ferruginol. In addition, the leaves of S. grandifolia were rich in tanshinone biosynthesis precursors, such as 11-hydroxy-sugiol, while those of S. miltiorrhiza were rich in phenolic acids. Genes in the upstream pathway of tanshinone biosynthesis were highly expressed in the root of S. grandifolia, and genes in the downstream pathway were highly expressed in the root of S. miltiorrhiza. Here, we describe the specific tissue distributions and mechanisms of diterpenoids in two Salvia species, which will facilitate further investigations of the biosynthesis of diterpenoids in plant synthetic biology.

19.
Chin Herb Med ; 15(3): 376-382, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37538858

ABSTRACT

Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites, in which triterpenoids are the major constituents. This paper introduced the germplasm resources of genus Ganoderma from textual research, its distribution and identification at the molecular level. Also we overviewed G. lucidum in the components, the biological activities and biosynthetic pathways of ganoderic acid, aiming to provide scientific evidence for the development and utilization of G. lucidum germplasm resources and the biosynthesis of ganoderic acid.

20.
iScience ; 26(8): 107346, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37539033

ABSTRACT

Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFß1 expression and activates the TGFß1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...